If it's not what You are looking for type in the equation solver your own equation and let us solve it.
D( x )
x < 0
x < 0
x in <0:+oo)
y = x-x^(1/2) // - x-x^(1/2)
x^(1/2)-x+y = 0
t_1 = x^(1/2)
1*t_1^1-1*t_1^2+y = 0
t_1-t_1^2+y = 0
DELTA = 1^2-(-1*4*y)
DELTA = 4*y+1
4*y+1 = 0
4*y+1 = 0 // - 1
4*y = -1 // : 4
y = -1/4
DELTA = 0 <=> t_2 = -1/4
t_1 = -1/(-1*2) i y = -1/4
t_1 = 1/2 i y = -1/4
( t_1 = ((4*y+1)^(1/2)-1)/(-1*2) or t_1 = (-(4*y+1)^(1/2)-1)/(-1*2) ) i y > -1/4
( t_1 = ((4*y+1)^(1/2)-1)/(-2) or t_1 = ((4*y+1)^(1/2)+1)/2 ) i y > -1/4
y-(-1/4) > 0
y+1/4 > 0
y+1/4 > 0 // - 1/4
y > -1/4
t_1 = 1/2
x^(1/2)-1/2 = 0
1*x^(1/2) = 1/2 // : 1
x^(1/2) = 1/2
x^(1/2) = 1/2 // ^ 2
x = 1/4
t_1 = ((4*y+1)^(1/2)-1)/(-2)
t_3 = -(((4*y+1)^(1/2)-1)/(-2))
t_3+x^(1/2) = 0
1*x^(1/2) = -t_3 // : 1
x^(1/2) = -t_3
x^(1/2) = -t_3 // ^ 2
x = t_3^2
t_1 = ((4*y+1)^(1/2)+1)/2
t_4 = -(((4*y+1)^(1/2)+1)/2)
t_4+x^(1/2) = 0
1*x^(1/2) = -t_4 // : 1
x^(1/2) = -t_4
x^(1/2) = -t_4 // ^ 2
x = t_4^2
x in { 1/4, (-(((4*y+1)^(1/2)-1)/(-2)))^2, (-(((4*y+1)^(1/2)+1)/2))^2 }
| .5f-2=1/6f | | 4x=5;x=4/5 | | y+8=7(x-2) | | 3/2x-5 | | 3(27)=g | | 2(6x-8)=-4 | | 17/11=y/13 | | 9(p+4)=18 | | g=3(9) | | 3/4(8x-100)-2x=5 | | -8(x+1)=6x+34 | | y-10=-5(x+1) | | 3(3w-4)=21 | | -3(0.234-x)=2(x+0.974) | | 45a=180 | | 9/20÷-3/5 | | (8-11i)(8-11i)=-57-176i | | 60x^2-5x=0 | | (2x/7)-7=-11 | | 5a+7=26 | | .30m-38=74 | | 4/27m=31/9 | | 7y-8=6yZ+1 | | 8x-2=28x+3 | | 15=5y-13 | | 6-8y=38 | | y+9=3(x+1) | | 71x-1+90-20x=180 | | 5x+8=-2x+36 | | 10+5x+6x-2=180 | | .30+38=36 | | 1=0.3x-0.4x-6 |